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SUMMARY

The effective population size N, of a large population with discrete
generations can be calculated from a T-type branching process, in which
each type has at least one copy of an allele A in its genotype. With neutral
alleles, the branching process is positively regular with a first moment
matrix M that has a dominant eigenvalue 1 and corresponding left and
right eigenvectors p* = (py,--wpp)and v = (v,. .., vp)’ which satisfy the
equations Z; p; v; = 1 and X; p; = 1. In this paper it is shown that if Yj; is
the number of offspring of type j of a parent of type i, then
Ziinar(EjYijvj) is proportional to K / 2N,, where K is the number of copies
of a gene among fertilized eggs. Examples of the calculation of N, in this
way are then given for random mating dioecious populations and
populations that reproduce partly by selfing or full-sib mating. A
generalization of the theory that applies to age-structured random mating
populations is also discussed. Finally, it is shown that N./ K is proportional
to an approximate expression that has recently been obtained for the
probability of the long- term survival of A when it is initially present in
one individual with a single copy of this allele in its genotype.

Key words : Effective population size, Branching process, Survival
probability.

1. Introduction

One of the ways to define the effective size N, of a population of constant

size and unchanging demographic structure is in terms of the variance of the
shift in the frequency of an allele. Thus, if there is no selection, q and q, are

the\frequencies of an allele A in generations 0 and 1, and Aq = q, —q, we have

Var (Aq) = SL(le—_(L)

¢

Then N, is what Crow [2] called the variance effective population number.
This concept was developed more fully in later papers by Crow and Morton [4),
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Kimura and Crow [16], Crow and Denniston [3], Latter [17], Hill ({11}, [12])
and Ethier and Nagylaki [6].

In this paper, the approach that will be used in calculating N, will be to
take some well known results from the theory of multitype branching processes
and adapt them to approximate properties of a stochastic process that governs
the change in numbers of an initially rare allele A in a large finite population.
After a statement of these results in Section 2, it will be shown in Section 3
that the reciprocal of N, can be approximated by a multiple of an expression
on the right sides of equations (5) and (6). The first of these approximate
equations applies if there is complete random mating and the second if
reproduction is partly by a regular system of inbreeding. Use will then be made
of this theory to derive N, for a dioecious random mating population, a partly
self-fertilizing population, and a population consisting of N/2 permanent couples
that reproduce partly by full-sib mating. When there is a dioecious population,
results will be obtained for both autosomal and sex-linked loci. Generalizations
applicable to random mating age-structured populations will also be discussed.

2. Relevant Results from the Theory of Branching Processes

Let us consider a T-type branching process with the first moment matrix
M and finite second moments. It will be assumed that M is irreducible and

aperiodic, so that all the elements of M" are positive for some inieger t. It can
" then be shown that M has a simple dominant eigenvalue p. In all the examples
to be discussed in this paper p = 1. Associated with this dominant eigenvalue
are unique left and right eigenvectors, having only positive elements, that satisfy
the equations ’
-pPM=p , Mv=y
T T
p’l=z pi=1, p'v=2pivi= 1 1)

i=1 i=1

(Here and in the remainder of this paper the transpose of a matrix A is denoted
by A’ and a lower-case boldface letter without a prime indicates a column
vector).

Now let €’; be €qual to a row vector that has 1 in the i-th position and
zeros elsewhere. Then the matrix of first moments of the process at time t is
given by €', M'. Because 1 is the dominant eigenvalue of M, it follows that

e;M'=e;vp’ + My=vp' + M, | 2
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where the sum of the absolute values of the clements of M, is of the same

order of magnitude as a* for some a, 0 < a < 1. The foregoihg results are
presented, for example, by Harris [10].

In what follows, the types in the branching process will be individuals
with one copy of A in their genotype if there is complete random mating, but
if there is partial inbreeding at least one type could have two or more copies
of this allele.

3. A Method for Calculating the Effective Population Size

Suppose that the frequency of an allele A in a population with discrete
generations is q at time 0. Then if Aq is the random change in the frequency
of A between generations 0 and 1, :

-9 _ 4
v _9d-9 |
ar (Aq) N, N,
if q is small. Thus if the number of copies of a:gene.is K among fertilized
_eggs of every generation and z is the number of copies of ‘A,

1 Kz~

Var(Az) = K 3

22 —

K 2N, 2N
if q = 2K is small. Note that if N, and Ny are the numbers of males and
females then K is equal to 2N, +Np) = 2N if there is an autosomal locus
and to 2N; + Ny if the locus is sex-linked.

Now if t, is large but t/2N, is small, (3) implies that the variance of

the number of copies of A generated in t, generations by z copies at time 0
is approximately ‘
4, Kz

ty Var(Az) = N 4

At the level of approximation used to obtain (3) and (4), the branching
process, introduced to Section 2, can be used to obtain an approximation to
N_ if K is large and there is initially a single ancestral individual with a single

copy of A in its genotype. Let the associated element of v be v,. Then we
have from (2) that there are on the average v, descendants of this ancestor at
time t, of which a proportion p, are expected to be individuals of type i that
have allele A.
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Now let us first suppose that each type has only one copy of A, Let
Y,-j be the number of offspring of type j of a single repfesentative of 4type i.
Then if t, is large and /K is small, the variance of the number of copies of
A generated in t; +1, generations by a single ancestor of type 1 is approximately

T T
t,+t) v; ¥ p; Var > Y;; v‘j)
i=1 j=1

because different individuals with A are assumed to reproduce independently.
This assumption is reasonable while A, is rare, and should approximately hold

because in the examples to be considered a is much smaller than 1-1/K. Thus
if t) is replaced by t, +1t in (4), it follows that

T T
% = 2 Var (¥ Yyv) ©
¢ =1 j=1
if K is large and each type in the branching process has only one copy of A.

We now consider a situation in which each representative of type i in
the population has n; copies of A and Vi = 0;vy. Then, in the long run, the
expected number of descendants of a single ancestor of type 1 is vy, whereas
the expected number of copies of A among these descendants is

T T
v oop=Yvp =1
i=1 i=1
Thus, if t; +1 replaces ty and z=1, the right side of (4) becomes
(t; + DK/2N, . 1t is also true, however, that the variance of the number of -
copies of A generated in t; + 1 generations by a single ancestor -of type 1 is
approximately

T T T T -
vy X pVar( Y Yn) = v 2o Var (Y Yyv)
i=1 j=1 i=1 j=1

v, K T T

l .

ZNC“zpi Var( 3 Yyv) ©)
i=1 j=1

Hence

if K is large and v; = njv;, where n; is an integer equal to the number of
copies of A in type i.
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If T is large, it seems at first sight that it may be difficult to verify that
" p=1,evenif A is neutral in comparison with other alleles; collectively denoted
by A, and K is assumed not to change with time. If, however, one can find
vectors v and p’ that satisfy (1), it will not be necessary to calculate all the
eigenvalues of M. Suppose that p > 1 and that the right eigenvector with only
positive elements that corresponds to p were y. Then we would have

p'My =p’y=pp’y
which implies that p’y=0. But this contradicts the assumption that y has only

positive elements. Therefore p=1 if vectors v and p’, which satisfy (1), can
be found.

4. Random Mating Dioecious Populations

We assume that there is a large population with, ‘initially, a single copy
of A in a fertilized egg, whereas all other copies are A. Let types 1 and 2 be
respectively males and females that have one copy of A in their genotypes.
Then, if N, and N are respectively the numbers of males and females in each

generation, the first moment matrix of the branching process is

Ly cNe
2 2N,
M= M
1Ny 1
2 Ng 2

where b=c=1 if the locus under consideration is autosomal and
b=0, ¢=2 if it is sex-linked.

The eigenvectors corresponding to p=1 are then

N cN; ]
p,=[N TN - ®
m C f m+CNf

and

)

N_+cN; N, +cN]
VEINA+0 ' N+

It follows from (5), (8) and (9) that

2 : 2
K
N = Zpi Var ( z YijVj)

€ =1 j=1
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Nm+CNf 1 2
= (1 +C)2 Nm N2 Var (Y“)+ COV (Y]l ,Y12)

1
— Var(Y5)| + cN Var (Y,,)
N 12} f [N 21

f m

+ N2 Cov(Y,,Yy) + — 1 Var(Yzz)J} (10
m f

Now let kij denote the total number of successful gametes, contributing to

offspring of sex j, that emanate from a parent of sex i. Let us suppose first
that the locus is autosomal. Then the conditional distribution of Y;j, given

k;; , is binomial with k;; trials and a probability of success equal to 1/2.

Hence Var (Y;) = E{ Var (Y;; | k; )]+Var[E(Y il ki)l

1

where E (k; ) = 2E (Yu) In \addition, Mendelian segregation takes place
mdependently in gametes contributing to male and female offspring, so that

Cov (Y“, le)= E [Cov (Yil’ le | k“, k,z)] + Cov [E (Y“ | Gil)’ E (YiZ | E12)]
= ¥ Cov(ky kp) (12)

Equations (7), (10), (11) and (12) imply that

1 1
= W[Var(k“)+ 2

Ne
Nm
+ —Nf Var (k) +2 1 6N Var (k,,)

N¢ N¢
+ 2[ JCov (kyp . kgp) + [N JZ Var(k21)+2J (13)

This formula is the discrete generation special case of an expression obtained
by Hill ([11], [12)).

o1 Cov kyy ki)

When there is a sex-linked locus, equations (11) and (12) still hold for
i=2. But males of genotype AY produce no sons with that genotype when
they mate with AA females, so that Y, is identically equal to 0. Hence

Cov (Y,,Yp)=Var(Y,;;)=0. In addition, all daughters of an AY x AA
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mating are of genotype AA which implies that Var (Y,,) = Var (kjp). Now
c=2, so that (7), (10), (11) and (12) lead to

L L) varx )+‘2 N Cov (ky; , kp) + a4 \-laf(k‘ )+1 |
Ne - 9Nf 2 Nm . 2 22 Nm 2

1|, Nm |
+ N, 2 N, Var (k;,) +1 (14)

This formula is the discrete generation special case of an expression obtained
by Pollak ([20], [21]).

5. Monoecious Populations with Partial Selfing

Consider a monoecious population, of size N in every generation, in which
there is self-fertilization with probability B, and the union of gametes from

random separate individuals with probability 1-B,. If there is selfing, an

individual supplies both a male and a female gamete to a fertilized egg, whereas
if there is random mating the average numbers of male and female gametes
it contributes to separate offspring are each equal to one. Thus, each individual
has, on. the average, B, offspring from self-fertilization and 2(1 —§,) from

random mating:

Let types 1 and 2 be defined to be respectively the genotypes AA and
AA and assume that initially all individuals except one have the genotype
AA. The first moment matrix of the relevant branching process is then

Bl. ﬁl. Bl Bl
M=zt B Gl=1T2
2_(1‘51) ﬁl-_ 120-8p By
. C(40-B) _B
ence P T{74-3p, ’ 4-3B
(4-3B 4-38,Y
and v = 2(2'61)’2'51

from which it follows that

2

2
2 Pi Var ( z YU VJ)

i=1 j=1
4-3p,

= m[ﬂl —By) Var (Y, +2Yy) + By Var (Y2l+2Y22)]
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Note that Y, +2Y,, is equal to k; , the number of copies of allele A that
an indivicual of type i contributes to offspring. If i =2, this is equal to k, the
total number of successful gametes produced by an individual. If i= 1, the
conditional distribution of k), given k, is binomial with k trials and a probability
172 of success. Since E (k) = 2, it follows that

Var (Yy; +2Y,,) = Var(%]ﬂi(%)

In this case K = 2N and (6) applies, so that

Vl v

1
N, 2@-ppN [ Var (k) + 231 —AB')] (15)

Now if there is an infinite population with respective probabilities f, and
1-B, of reproduction by selfing and random mating, it was shown by

Haldane [8] that the inbreeding coefficient F of a random individual is equal
to  B,/QB) in the long  run. Thus 1+4F-= 2/2-B),

1-F=2(1-8))/(2-B,), so that (15) can be recast as

11 '
Ezm [ (1+F)Var(k)+2(1-F)) (16)

which agrees with a result obtained by other methods by Caballero and Hill m
and Pollak and Sabran [24].

6. Dioecious Populations Reproducing Parily by Fuil-Sib Mating

I assume that there are N/2 permanent couples in every generation, of
which a fraction B, is expected to be full-sibs and a fraction 1 - B, to consist

of random male-female pairs. If the population is large and the allele A is
initially rare, full-sibs mated to each other do not give rise to independently
developing lineages, but, to a good approximation, we can assume that separate
couples reproduce independently. Thus mating couples with at least one A in
the genotype of at least one mate will be taken to be units in the approximating
branching process. :

Let us first assume that there is an autosomal locus. Then the parental
mating types and the expected numbers of offspring mating types produced
by them are listed in Table 1.

An example of how the entries in this table are generated is as follows.
First, the expected number of full-sib mating offspring couples produced by a
parental couple is one, whereas the expected number of progeny of a couple
is two. Thus if there is random mating one couple produces, on the average,

.
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Table 1. Expected numbers of matings of various types among offspring-autosomal

locus .
Parental mating type Offspring grix:';: sibs do not Mating ty;:;;zt igni;cn full-sib

(1) AAxAA : ) S %(1)+%(3)

(2) AAXAR 2(1) 3

() ARxARK R LD+ +30)

1 1
+ 2(4) + TE(S)

4 AAXAR M+@ 10)+ 20+ 30)
(5) AAXAA _ 212) (3)

two offspring couples. Thus if there isa parental mating of type (4), it produces

the array of offspring = AX + —Z—AA so that if there is random mating we

expect one each of matmgs of types AA x AA and AA X AK In a shorthand
summary notation this can be written as (1) + ). If, on the other hand sibs

mate, we expect the array of offspring couples to be 2(3) + = (4) + —(5)

By using the entries in Table 1, we can calculate the elements of the
first moment matrix. Thus we have

2-B, B
) 0 4 0 0
20-By)) O B, -0 0
M = 4-38, 4- 3B, E & _Bl
- 4 8 4 4 16
B, B B,
1- 1- = = =
BZ BZ 4 22 4
0 20-8) O 0 B2
It can then be shown that
v=v,(1,2,2,3,4)
16 -20B, + 5B 1 B, BaBr+2)

P'=P3I T8 2By 2 22-By)’ 160-B,) 2B
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(4-3B,) (4B,

aB,(1-B,) 17

and 1=pv=v,p;

Thus we have
s s
i=1 j=1
s
= ) pVar [(Y;; +2(Yy + Yy3) +3Y;4+ 4Y;5) vyl
. i=1
Now Y“ +2 (le + Yi3) + 3Y‘4 + 4Yi5

is equal to g;, the number of copies of A that a couple of type i contributes

to offspring. Let g be the total number of successful gametes contributed to
offspring by one parental couple. Then g is equal to g and, because all offspring

of matings of type 2 are heterozygotes, g, =g
Now let Bin(n, p) represent a binomial distribution with parameters n and

p. Then, because of Mendelian segregation when only one of the mates in a
couple is heterozygous, the conditional distributions of 21,83 and g, are as

follows :

. 1 1
gilg~ Bm[% 2) gs'g~Bm(g,5J, g4|g~3+Bm[§ 2J
Therefore '

Var(g)) = E(§J+ Var(%] = l+—1-Var(g)
Var (g,) = —Var (®

—1+111Var(g)

1.9

Var (g;)=E % + Var

NFN

Var (g)=E % + Var

Mu

and Var (g5) = Var (g) Therefore

Zp.Var(ZY,,v,) 16(Zp, v2) Var (g)

i=1 Jj=1 =1

V2 ps [16 ~20B, + 5B2 B, J
7

-6 ' TI-B|
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By virtue Qf (17) this expression can be shown 10 be equal to
Vl ’
—————| Var(g)+8(1 -
However, Ghai [7] has shown that in an infinite population with partial full
sib mating the inbreeding coefficient is equal to B,/(4—3B,) in the long run.
Hence 1 +3F=4/(4-3By) and 1 -F=4(1 - B,)/ (4 - 3B,). Consequently, 6)
implies that
1 1
Nez T6N [ (1 +3F) Var (g) + 32(1 - F)] (18)
But g is equal to twice k, the number of offspring of a couple. Therefore (18)
can be rewritten as - ’ ‘ :
1 1
N, =N [ (1 +3F) Var (k) +2(1 + F)] (19)

which is consistent with a general result obtained by Cabaliero and Hill [1].

Now let us consider a sex-linked locus. The parental mating types with
allele A and the expected numbers of offspring ‘mating types with that allele
are listed in Table 2. It is, of course, assumed that a large population consists
almost entirely of AA females and AY males.

The notan‘on in this table is the same as in Table 1, and the first moment
matrix can now be obtained from its entries. It is equal to

- ) T

-8, 2B, 0 B2 0
4 4 4 -
1 0 0 0 0
M=118, 1B 0 B, O
24, 1B, 2B, B B
4 2 4 4 4
ok R0 R
The left and right eigenvectors. éoneshondixlg to p=1 are, respectively,

VR T2, 2 AR
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Table 2. Expected numbers of matings of various types among offspring-sex-linked

locus )
Parental mating type : Offspring mating typés
o Given sibs do not mate Given full-sib mating
R 1.1 SRS PP DR
UMKXKY - 2+3@) TD+3@+ 54
(2) A& x AY 6 (1
(3) AA xAY M+@ 4
(4) AR X AY _ %(1)+%(2) %(1)+%(3)'
' 1 1,1
+ 5(3) + 2(4) + Z(S)
(5) AAXAY 2)+(3) (5)
and v=v,(1,1,2,2,3)y Q0

From the equation p’ v = 1 we then obtain

_ 43,08y
Y1P4 = 308,)(@-3p,)

Equation- (20) implies that

(21)

s -5 5
- z inar(ZYiJ-vj) = Epjvar(vlgi)'

i=1 j=1 i=1

where g; is the humber of gametes of type A that a coUple of type i contributes
to offspring couples. Now let ke and k;, respectively denote the number of

gametes with X-chromosomes contributed by females to sons and daughters
and by males to daughters. Then, given k¢ and k,, , the conditional distributions

of gy, 8, 83,84 and g5 are as follows :

. 1
gl | kf, km ~ Blﬂ(kf, 5)

8 ke ko ~kpy
83 lke ko ~ k¢

g4k ky, ~k_ + Bin(kf, %J
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s ke kyy ~ke+kpy
It therefore follows that

Var(g,)=E if + Var & =l+-1-Var(k)
1 4 2172 4 f

Var (g;) = Var (k)
Var (g3) = Var (k¢)

k¢ 1
Var(g4)=E Y + Var (k, + > kp)

1
2
Var (k) + Var (kg) + 2 Cov (k. kp)

+Var (k) + % Var (ko) + Cov (k,,, ko)
Var (gs)

Thus, by virtue of (6) and (21), we obtain

3Nv, v, [40-B) 2-B %,
l '[4_3322 + 4_3;2Var(kf)+Var(l<,n)+4_3262Cov(km,kf):l

4N, " 3

(22)

The approximate equation (22) can be expressed in terms. of the inbreeding
coefficient in the long run in an infinite population that reproduces partly by
full-sib mating. When there is a sex-linked locus, the inbreeding coefficient
of a female is the probability that its two separate copies of a gene are identical
by descent, and the coancestry of a female and a male is the probability that
a randomly chosen copy of a gene in the female is identical by descent to the
male’s single copy. If a male and a female are mated, the inbreeding coefficient
of a random daughter from the mating is the coancestry of her parents. In
addition, the coancestry of a male and a female is equal to the coancestry of
the female with the mother of the male.

I shall now apply the theory summarized in the foregoing paragraph to
full-sib mating. Thus, let x, and Y, be respectively a male and a female of

generation n, and denote by Fy and 6 y the inbreeding coefficient of Y,
and the coancestry of x, and Y, . Then, given that there is full-sib mating,

1
By = O Yo =0V, =50y x +5 6y v
1 1
=2Fy, tgU+Fy)
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If there is not full-sib mating, 6, aYoy = 0. Consequently, if F, is the

inbreeding coefficient of a random female of generation n
F ., = B [1+F +2F ;1]
n+2 4 n n+l

At equilibrium, which is attained in the long run, we have F in place of F,
and this is equal to B, / (4 - 3B,) , as it is for an autosomal locus. It now follows
that 1 —F=4(1-B,)/ (4-3B,) and 1 + F =2(2-$,)/ (4-3B,) . Thus, (22) can be
rewritten as

1 2

N = o [ 20-F) + (14F) Var (k) + 2 Var(ky) + 4F Covlkp k)l (23)

Note that if N, =N;=N/2 and there is random mating, (23) reduces to the

special case of (14) that applies when there are equal numbers of males and
females, as it should.

7. General Resulls for Age-S’tructured Populations

To the best of my knowledge, theory for age-structured populations has
until now only been developed for situations in which there is complete random
mating. If a population is monoecious the limiting form of (16) when F tends
toward O is

1 1
N, ~ N [Var(k) + 2]
which is a result obtained by Haldane [9], and essentially the same as an
“expression due to Wright [26] if N is large. Hill ([11], [12]) derived the
generalization for an age-structured population observed at times 0, 1,. . . and
having age classes 0, 1, ..., T. It is
1 1

Fe = ANL [Var(k) + 2] 24)

where L is the mean, over individuals in age group 0 in a population having
a stable age distribution, of the ages of parents, N is the number of individuals
in age group 0, and k is the number of offspring an individual produces in
its lifetime. His reasoning differed from the approach taken in this paper, but
Pollak [19] was able to obtain (24) in an alternative way by 'using an
approximate expression analogous to (5).
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When the population is dioecious it can be divided into age-sex'classes
(0D, (11), ..., (T;1), (02), (12), ..., (T;2), where the first T; + 1 of these are

associated with males and the remainder with females. Thus, for example, a
female is said to be in age-sex class (x2) at time t if it is between x and x+1
units of age at that time. Individuals in these classes that have one A in their
genotypes are the types in a branching process. '

In what follows a subscript i or j will assume the value 1 if it refers to
a male and 2 if it refers to a female. In terms of this notation L;; will then

denote the mean age of a parent of sex i when an offspring of sex j is born.
The generation interval L is the unweighted average of the L;; ’s over all possible

values of i and j, so that
' L=-}I[L“‘+L12+L“+L22] (25)

for an autosomal locus and
L=%[L12+L21+L22] (26)

for an x-linked locus.

If at times O, 1, ... the numbers of males and females in age group 0 are
respectively m and f it turns out that (13) generalizes to

1 11 m m)*

1 f £ )2
+ Ts_f[var(k”Hz(E]COV (k21,k22)+(6] Var(k21)+2]} (27

where L is given by (25) and k;; is the mean number of offspring of sex j
produced by a parent of sex i throughout its life. This is the formula derived
by Hill ((11], [12]). If there is a sex-linked locus the expression corresponding
to (14) is

1.1 L Var(k,,) + 2 £ Cov (Kyy, kyo) + £ 2Var(k )+1
N, L9 2 o R 2
1 2
" om [2 (l?J v (kn)H]} ’ o

where L is given by (26). This is the formula obtained by Pollak ([20], [21]),
the first time by use of the methods discussed in this paper and the second
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by adopting Hill’s method. In the first of these papers there was also a derivation
of (27) by means of the branching process approximation,

My earlier derivations were direct and lengthy. In a later paper (Pollak
[22]) they were shortened by considering a discrete generation branching process
corresponding to distributions of offspring males and females produce
throughout their lives. However, the argument was completed by invoking an
approximate expression for the survival probability of a slightly advantageous
allele originally in a single ancestor of sex i and age 0. I would prefer to be
able to do this by reasoning entirely in terms of neutral alleles, as in this paper,
but have not yet been able to do so.

The results obtained by Pollak ([19], [20], [21]) indicate that the analogue
and generalization of (5) that holds when there is, an age-structured random
mating population is

T T
—2NK_CL = E, p; VaT(FZl ijVj) (29)
8. Discussion
The right side of (5) appears in branching process theory in contexts other
than those discussed in this paper. Thus, for example, if g’t is the vector of
numbers of individuals of various types at time t and p=1,
IimtP [z, # 0'lzy=¢'] = )
iz Olze= el _Z P SO VVE Y, Y, 5. Y, ]
i

r s

where 0’ = [0,0,...,0]and
(1, r=s
8rs = ( 2, r#£s
provided that all of the second moments of the numbers of offspring at time
1 of parents at time O are finite. This was proved by Joffe and Spitzer [14],

though Mullikin [18] had earlier derived the limiting form under the assumption
that moments up to the third order are finite.

Because

E[ Yir Yis _srs Yir 1 = Cov (Yir' Yis ) - 8rs my + m;m;.




EFFECTIVE POPULATION SIZE ' 63

where m,, is the element in the ith row and rth column of M, it follows from
(1) that

zpi Z Evrvs Ef Yir Yns rs ir !
i r s
= Epi 2 ZVerCOV(Yir'Yis) - Zprvf + Zpivi2
i r s r i

Hence

limtP [z, #0 lz (30)
(oo~ zp, Var(ZY )

The right side of (5) also plays a role in the calculation of an approxxmatxon
to the survival probability of a line descended from a single ancestor of type i
if p is slightly larger than 1. .

In this case Hoppe [13] proved that -

limP [z, ¢0’|z J]
10~ -

2(p-1 vi+0(p-1) (1)

_ )
Zpi Var (EYirvr) !

if p is a function of a small parameter € and p and the extinction probabilities
approach 1 as & approaches 0. It is also assumed that all the probability
generating functions and their first derivatives converge uniformly as € -0
for all values of their arguments that are between O and 1. Eshel [5] and
Pollak [22] bad already made use of (31) in special cases that arise in genetics
when one wishes to compute the survival probability of a slightly advantageous
allele.

Note that, to a good approximation, (5) and (31) imply that
4N,
lim P[z, # 0’'lz/;=¢")] = —(p-Dv, (32)
t—0 ~ ~ o~ ~ K
whereas (6)-and (31) analogously lead to
4N,
lim P[z/, ¢0’|z =e,]——(p -1) 33)
t—e0 ~

Expressions (32) and (33) generalize a result obtained by Kimura [15].
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In my previous work, I have already used special cases of (5) (see Pollak
[22]). My first encounters with theory for nonrandom mating populations led
to errors, but these were corrected and correct expressions involving special
cases of (6) were given by Pollak and Sabran [24] and Pollak [23]. However,
the complete derivations were not given because there were no errors in the
original matrix calculations, to which references were made, and these papers
were mainly on other properties of nonrandom mating populations.

Two purposes of this paper have been to demonstrate in general why (5)
and (6) work for diploid populations with discrete generations, and to present
self-contained and complete treatments of various special cases on which I have
previously written. In my earlier works the right sides of (5) and (6) appeared
as by-products of calculations conceming other properties of finite populations
than effective population sizes per se. Because of this, and the fact that units
in the branching process were not necessarily the same as individuals, it was
not immediately obvious that (6) holds.

I have not previously calculated N, for the case of partial full-sib mating,
With N/ 2 permanent couples and a sex-linked locus. In a paper that has Jjust
been published, Wang [25] has shown that in such a population

11 2 2 a0
N, " ON [ 4(1-0) + 2(1+30) 0™ + 4(1+0) of — 4oy, ]

In this expression &= F, o7, and of are respectively the variances of the numbers

of male and female progeny of a family, and 02=ofn+o%+29 , where 8 is

the covariance betweea the numbers of male and female progeny. thing that

ke and k,, are respectively equal to Wang’s m+f and f, it is clear that (23)
can be rewritten as

1 1
N =N [ 4(1-F) + 2(1+F) 0* + 40} + 4F(} + 26 + 02, + 0% — 02)]

1
= 9§ | 4(1-F) + 2(1+3F)c” + 4(1+F)of — 4F02,]

Hence the two results are equivalent.

I have also shown how some of my previous work on age-structured
populations involves (29), which generalizes (5). I have not yet been able to
generalize (6), but if such a generalization were shown to hold, it could prove
. to be useful.

Finally, a connection has been shown between the ratio of K to 2N, and
equation (31) for the probability of the long-term survival of allele A in a
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lineage descended from one ancestor with a single copy of A. Thus, at least
if one can formulate the problem of calculating survival probabilities in terms
of a multitype branching process approximation, (32) or (33) can be used, with
N,/ K being calculated either by the methods used in this paper or, say, the

method perfected by Caballero and Hill [1).
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